Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 49(3)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35325171

RESUMO

Bacillus licheniformis is a well-known platform strain for production of industrial enzymes. However, the development of genetically stable recombinant B. licheniformis for high-yield enzyme production is still laborious. Here, a pair of plasmids, pUB-MazF and pUB'-EX1, were firstly constructed. pUB-MazF is a thermosensitive, self-replicable plasmid. It was able to efficiently cure from the host cell through induced expression of an endoribonuclease MazF, which is lethal to the host cell. pUB'-EX1 is a nonreplicative and integrative plasmid. Its replication was dependent on the thermosensitive replicase produced by pUB-MazF. Transformation of pUB'-EX1 into the B. licheniformis BL-UBM harboring pUB-MazF resulted in both plasmids coexisting in the host cell. At an elevated temperature, and in the presence of isopropyl-1-thio-ß-d-galactopyranoside and kanamycin, curing of the pUB-MazF and multiple-copy integration of pUB'-EX1 occurred, simultaneously. Through this procedure, genetically stable recombinants integrated multiple copies of amyS, from Geobacillus stearothermophilus ATCC 31195 were facilely obtained. The genetic stability of the recombinants was verified by repeated subculturing and shaking flask fermentations. The production of α-amylase by recombinant BLiS-002, harboring five copies of amyS, in a 50-l bioreactor reached 50 753 U/ml after 72 hr fermentation. This strategy therefore has potential for production of other enzymes in B. licheniformis and for genetic modification of other Bacillus species.


Assuntos
Bacillus licheniformis , Bacillus , Amilases , Bacillus/genética , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Plasmídeos/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo
2.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34124759

RESUMO

Ammonium hydroxide is conventionally used as an alkaline reagent and cost-effective nitrogen source in enzyme manufacturing processes. However, few ammonia-inducible enzyme expression systems have been described thus far. In this study, genomic-wide transcriptional changes in Bacillus licheniformis CBBD302 cultivated in media supplemented with ammonia were analyzed, resulting in identification of 1443 differently expressed genes, of which 859 genes were upregulated and 584 downregulated. Subsequently, the nucleotide sequences of ammonia-inducible promoters were analyzed and their functionally-mediated expression of amyL, encoding an α-amylase, was shown. TRNA_RS39005 (copA), TRNA_RS41250 (sacA), TRNA_RS23130 (pdpX), TRNA_RS42535 (ald), TRNA_RS31535 (plp), and TRNA_RS23240 (dfp) were selected out of the 859 upregulated genes and each showed higher transcription levels (FPKM values) in the presence of ammonia and glucose than that of the control. The promoters, PcopA from copA, PsacA from sacA, PpdpX from pdpX, Pald from ald, and Pplp from plp, except Pdfp from dfp, were able to mediate amyL expression and were significantly induced by ammonia. The highest enzyme expression level was mediated by Pplp and represented 23% more α-amylase activity after induction by ammonia in a 5-L fermenter. In conclusion, B. licheniformis possesses glucose-independent ammonia-inducible promoters, which can be used to mediate enzyme expression and therefore enhance the enzyme yield in fermentations conventionally fed with ammonia for pH adjustment and nitrogen supply.


Assuntos
Amônia/metabolismo , Bacillus licheniformis/metabolismo , Regiões Promotoras Genéticas , alfa-Amilases/metabolismo , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano , Fermentação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Nitrogênio/metabolismo , Estresse Fisiológico , alfa-Amilases/genética
3.
Food Sci Biotechnol ; 29(11): 1491-1499, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33088598

RESUMO

A new aminopeptidase (An-APa) was identified and biochemically characterized from Aspergillus niger CICIM F0215. It had maximal activity at 40 °C and pH 7.0 and exhibited a broad substrate specificity both on hydrophilic and hydrophobic amino acid residues at N-terminals. With An-APa hydrolysis for 1 h, the casein-pepsin and soybean protein isolates (SPI)-pepsin hydrolysates released both hydrophilic and hydrophobic amino acids and the hydrophobic amino acids having Q values (degree of hydrophobicity) greater than 1500 cal/mol were remarkably released. Leu, Ile, Phe, Tyr, Trp, Pro, Val and Lys in the casein hydrolysate after treatment with An-APa increased 18.61, 0.84, 11.35, 13.18, 3.34, 6.30, 7.46, and 8.19 mg/100 mL, respectively, and 19.72, 1.47, 18.37, 11.72, 4.61, 4.10, 8.13, and 5.85 mg/100 mL, respectively, in the SPI hydrolysate. Both accounted for 65.0% and 64.4% of total released free amino acids from casein and SPI hydrolysates, respectively. This indicated that An-APa could be potentially applicable in debittering protein hydrolysates.

4.
3 Biotech ; 10(7): 303, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32566441

RESUMO

Two new aspartic proteases, PepAb and PepAc (encoded by pepAb and pepAc), were heterologously expressed and biochemically characterized from Aspergillus niger F0215. They possessed a typical structure of pepsin-type aspartic protease with the conserved active residues D (84, 115), Y (131, 168) and D (281, 326), while their identity in amino acid sequences was only 19.0%. PepAb had maximum activity at pH 2.5 and 50 °C and PepAc at 3.0 and 50 °C. The specific activities of PepAb and PepAc toward casein were 1368.1 and 2081.4 U/mg, respectively. Their activities were significantly promoted by Cu2+ and Mn2+ and completely inhibited by pepstatin. PepAb exhibited higher catalytic efficiency (k cat/K m) toward soy protein isolates than casein, while PepAc showed higher catalytic efficiency toward casein. The hydrolysis capacities of PepAb and PepAc on soy protein isolates were slightly lower than that of previously identified A. niger aspartic protease, PepA (aspergillopepsin I), while the resultant peptide profiles were remarkably different for all three proteases.

5.
Electron. j. biotechnol ; 40: 71-77, July. 2019. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1053491

RESUMO

Background: Burdock (Arctium lappa L.) is a fructan-rich plant with prebiotic potential. The aim of this study was to develop an efficient enzymatic route to prepare fructooligosaccharides (FOS)-rich and highly antioxidative syrup using burdock root as a raw material. Results: Endo-inulinase significantly improved the yield of FOS 2.4-fold while tannase pretreatment further increased the yield of FOS 2.8-fold. Other enzymes, including endo-polygalacturonase, endo-glucanase and endo-xylanase, were able to increase the yield of total soluble sugar by 11.1% (w/w). By this process, a new enzymatic process for burdock syrup was developed and the yield of burdock syrup increased by 25% (w/w), whereas with FOS, total soluble sugars, total soluble protein and total soluble polyphenols were enhanced to 28.8%, 53.3%, 8.9% and 3.3% (w/w), respectively. Additionally, the scavenging abilities of DPPH and hydroxyl radicals, and total antioxidant capacity of the syrup were increased by 23.7%, 51.8% and 35.4%, respectively. Conclusions: Our results could be applied to the development of efficient extraction of valuable products from agricultural materials using enzyme-mediated methods.


Assuntos
Oligossacarídeos/química , Raízes de Plantas/química , Frutose/química , Glicosídeo Hidrolases/metabolismo , Antioxidantes/química , Oligossacarídeos/metabolismo , Poligalacturonase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Cromatografia Líquida de Alta Pressão , Radical Hidroxila , Arctium , Alimento Funcional , Polifenóis , Frutose/metabolismo , Antioxidantes/metabolismo
6.
3 Biotech ; 9(6): 244, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31168437

RESUMO

To find a lipase for synthesis of flavor esters in food processing, a total of 35 putative lipases from Aspergillus niger F0215 were heterologously expressed and their esterification properties in crude preparations were examined. One of them, named An-lipase with the highest esterification rate (23.1%) was selected for further study. The purified An-lipase had the maximal activity at 20 °C and pH 6.5 and the specific activity of 1293 U/mg. Sixty percent of the activity was maintained in a range of temperatures of 0-30 °C and pHs of 3.0-8.5. The highest hydrolysis activity of An-lipase was towards pNPC (C8), followed by pNPB (C4) and pNPA (C2), then pNPL (C12). K m, V max, k cat, and k cat/K m towards pNPC were 26.7 mmol/L, 129.9 mmol/(L h), 23.2 s-1, and 0.8/mM/s, respectively. The ethyl lactate, butyl butyrate, and ethyl caprylate flavor esters were produced by esterification of the corresponding acids with conversion efficiencies of 15.8, 37.5, and 24.7%, respectively, in a soybean-oil-based solvent system. In conclusion, An lipase identified in this study significantly mediated synthesis of predominant flavor esters (ethyl lactate, butyl butyrate, and ethyl caprylate) in a soybean-oil-lacking other toxic organic solvents, which has potential application in food industries.

7.
Microb Cell Fact ; 17(1): 66, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720171

RESUMO

BACKGROUND: Lignocellulosic ethanol could offer a sustainable source to meet the increasing worldwide demand for fuel. However, efficient and simultaneous metabolism of all types of sugars in lignocellulosic hydrolysates by ethanol-producing strains is still a challenge. RESULTS: An engineered strain Escherichia coli B0013-2021HPA with regulated glucose utilization, which could use all monosaccharides in lignocellulosic hydrolysates except glucose for cell growth and glucose for ethanol production, was constructed. In E. coli B0013-2021HPA, pta-ackA, ldhA and pflB were deleted to block the formation of acetate, lactate and formate and additional three mutations at glk, ptsG and manZ generated to block the glucose uptake and catabolism, followed by the replacement of the wild-type frdA locus with the ptsG expression cassette under the control of the temperature-inducible λ pR and pL promoters, and the final introduction of pEtac-PA carrying Zymomonas mobilis pdc and adhB for the ethanol pathway. B0013-2021HPA was able to utilize almost all xylose, galactose and arabinose but not glucose for cell propagation at 34 °C and converted all sugars to ethanol at 42 °C under oxygen-limited fermentation conditions. CONCLUSIONS: Engineered E. coli strain with regulated glucose utilization showed efficient metabolism of mixed sugars in lignocellulosic hydrolysates and thus higher productivity of ethanol production.


Assuntos
Escherichia coli/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Lignina/metabolismo
8.
Biotechnol Lett ; 40(5): 781-788, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29564679

RESUMO

OBJECTIVES: To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery. RESULTS: Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate. CONCLUSIONS: By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Etanol/metabolismo , Xilose/química , Zea mays/química , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Genética , Glucose/metabolismo , Hidrólise
9.
Electron. j. biotechnol ; 26: 46-51, Mar. 2017. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1009650

RESUMO

Background: Current commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields. Results: To improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran ß-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced. Conclusions: Our method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.


Assuntos
Oligossacarídeos/metabolismo , Amido/metabolismo , Enzimas/metabolismo , Isomaltose/metabolismo , Oligossacarídeos/biossíntese , Aspergillus niger/enzimologia , Temperatura , Bacillus/enzimologia , beta-Amilase/metabolismo , Glicosilação , Liquefação , alfa-Amilases/metabolismo , Fermentação , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio
10.
Biotechnol Bioeng ; 113(1): 182-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26152364

RESUMO

Efficient production of D-lactate by engineered Escherichia coli entails balancing cell growth and product synthesis. To develop a metabolic switch to implement a desirable transition from cell growth to product fermentation, a thiamine auxotroph B0013-080A was constructed in a highly efficient D-lactate producer E. coli strain B0013-070. This was achieved by inactivation of thiE, a gene encoding a thiamine phosphate synthase for biosynthesis of thiamine monophosphate. The resultant mutant B0013-080A failed to grow on the medium in the absence of thiamine yet growth was restored when exogenous thiamine was provided. A linear relationship between cell mass formation and amount of thiamine supplemented was mathematically determined in a shake flask experiment and confirmed in a 7-L bioreactor system. This calculation revealed that ∼ 95-96 thiamine molecules per cell were required to satisfy cell growth. This relationship was employed to develop a novel fermentation process for D-lactate production by using thiamine as a limiting condition. A D-lactate productivity of 4.11 g · L(-1) · h(-1) from glycerol under microaerobic condition and 3.66 g · L(-1) · h(-1) from glucose under anaerobic condition was achieved which is 19.1% and 10.2% higher respectively than the parental strain. These results revealed a convenient and reliable method to control cell growth and improve D-lactate fermentation. This control strategy could be applied to other biotechnological processes that require optimal allocation of carbon between cell growth and product formation.


Assuntos
Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Tiamina Pirofosfato/metabolismo , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Engenharia Metabólica/métodos
11.
Microb Cell Fact ; 13: 78, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24884499

RESUMO

UNLABELLED: L-Lactic acid, one of the most important chiral molecules and organic acids, is produced via pyruvate from carbohydrates in diverse microorganisms catalyzed by an NAD+-dependent L-lactate dehydrogenase. Naturally, Escherichia coli does not produce L-lactate in noticeable amounts, but can catabolize it via a dehydrogenation reaction mediated by an FMN-dependent L-lactate dehydrogenase. In aims to make the E. coli strain to produce L-lactate, three L-lactate dehydrogenase genes from different bacteria were cloned and expressed. The L-lactate producing strains, 090B1 (B0013-070, ΔldhA::diflldD::Pldh-ldhLca), 090B2 (B0013-070, ΔldhA::diflldD::Pldh-ldhStrb) and 090B3 (B0013-070, ΔldhA::diflldD::Pldh-ldhBcoa) were developed from a previously developed D-lactate over-producing strain, E. coli strain B0013-070 (ack-ptappspflBdldpoxBadhEfrdA) by: (1) deleting ldhA to block D-lactate formation, (2) deleting lldD to block the conversion of L-lactate to pyruvate, and (3) expressing an L-lactate dehydrogenase (L-LDH) to convert pyruvate to L-lactate under the control of the ldhA promoter. Fermentation tests were carried out in a shaking flask and in a 25-l bioreactor. Strains 090B1, 090B2 or 090B3 were shown to metabolize glucose to L-lactate instead of D-lactate. However, L-lactate yield and cell growth rates were significantly different among the metabolically engineered strains which can be attributed to a variation between temperature optimum for cell growth and temperature optimum for enzymatic activity of individual L-LDH. In a temperature-shifting fermentation process (cells grown at 37°C and L-lactate formed at 42°C), E. coli 090B3 was able to produce 142.2 g/l of L-lactate with no more than 1.2 g/l of by-products (mainly acetate, pyruvate and succinate) accumulated. In conclusion, the production of lactate by E. coli is limited by the competition relationship between cell growth and lactate synthesis. Enzymatic properties, especially the thermodynamics of an L-LDH can be effectively used as a factor to regulate a metabolic pathway and its metabolic flux for efficient L-lactate production. HIGHLIGHTS: The enzymatic thermodynamics was used as a tool for metabolic regulation. Minimizing the activity of L-lactate dehydrogenase in growth phase improved biomass accumulation. Maximizing the activity of L-lactate dehydrogenase improved lactate productivity in production phase.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Láctico/biossíntese , Temperatura , Técnicas de Cultura Celular por Lotes , Biomassa , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , L-Lactato Desidrogenase/deficiência , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Engenharia Metabólica , Regiões Promotoras Genéticas , Piruvatos/metabolismo , Estereoisomerismo , Termodinâmica
12.
Sheng Wu Gong Cheng Xue Bao ; 29(1): 111-4, 2013 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-23631124

RESUMO

Glycerol from oil hydrolysis industry is being considered as one of the abundent raw materials for fermentation industry. In present study, the aerobic and anaerobic metabolism and growth properties on glycerol by Esherichia coli CICIM B0013-070, a D-lactate over-producing strain constructed previously, at different temperatures were investigated, followed by a novel fermentation process, named temperature-switched process, was established for D-lactate production from glycerol. Under the optimal condition, lactate yield was increased from 64.0% to 82.6%. Subsequently, the yield of D-lactate from glycerol was reached up to 88.9% while a thermo-inducible promoter was used to regulate D-lactate dehydrogenase transcription.


Assuntos
Escherichia coli/genética , Glicerol/metabolismo , Ácido Láctico/biossíntese , Temperatura , Aerobiose , Anaerobiose , Escherichia coli/metabolismo , Fermentação , L-Lactato Desidrogenase/metabolismo , Regiões Promotoras Genéticas/genética
13.
Biotechnol Adv ; 31(8): 1200-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23473968

RESUMO

In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.


Assuntos
Escherichia coli , Microbiologia Industrial , Engenharia Metabólica , Biocombustíveis , Biopolímeros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos Orgânicos/metabolismo
14.
Sheng Wu Gong Cheng Xue Bao ; 29(9): 1268-77, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24409690

RESUMO

High-efficient conversion of glycerol to L-lactate is beneficial for the development of both oil hydrolysis industry and biodegradable materials manufacturing industry. In order to construct an L-lactate producer, we first cloned a coding region of gene BcoaLDH encoding an L-lactate dehydrogenase from Bacillus coagulans CICIM B1821 and the promoter sequence (P(ldhA)) of the D-lactate dehydrogenase (LdhA) from Escherichia coli CICIM B0013. Then we assembled these two DNA fragments in vitro and yielded an expression cassette, P(ldhA)-BcoaLDH. Then, the cassette was chromosomally integrated into an ldhA mutant strain, Escherichia coli CICIM B0013-080C, by replacing lldD encoding an FMN-dependent L-lactate dehydrogenase. An L-lactate higher-producer strain, designated as E. coli B0013-090B, possessing genotype of lldD::P(ldhA)-BcoaLDH, deltaack-pta deltapps deltapflB deltadld deltapoxB deltaadhE deltafrdA and deltaldhA, was generated. Under the optimal condition, 132.4 g/L L-lactate was accumulated by B0013-090B with the lactate productivity of 4.90 g/Lh and the yield of 93.7% in 27 h from glycerol. The optical purity of L-lactate in broth is above 99.95%.


Assuntos
Escherichia coli/genética , Glicerol/metabolismo , Ácido Láctico/biossíntese , Engenharia Metabólica , Bacillus/enzimologia , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Metab Eng ; 14(5): 560-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22683845

RESUMO

During a fermentation process, the formation of the desired product during the cell growth phase competes with the biomass for substrates or inhibits cell growth directly, which results in a decrease in production efficiency. A genetic switch is required to precisely separate growth from production and to simplify the fermentation process. The ldhA promoter, which encodes the fermentative D-lactate dehydrogenase (LDH) in the lactate producer Escherichia coli CICIM B0013-070 (ack-pta pps pflB dld poxB adhE frdA), was replaced with the λ p(R) and p(L) promoters (as a genetic switch) using genomic recombination and the thermo-controllable strain B0013-070B (B0013-070, ldhAp::kan-cI(ts)857-p(R)-p(L)), which could produce two-fold higher LDH activity at 42°C than the B0013-070 strain, was created. When the genetic switch was turned off at 33°C, strain B0013-070B produced 10% more biomass aerobically than strain B0013-070 and produced only trace levels of lactate which could reduce the growth inhibition caused by oxygen insufficiency in large scale fermentation. However, 42°C is the most efficient temperature for switching on lactate production. The volumetric productivity of B0013-070B improved by 9% compared to that of strain B0013-070 when it was grown aerobically at 33°C with a short thermo-induction at 42°C and then switched to the production phase at 42°C. In a bioreactor experiment using scaled-up conditions that were optimized in a shake flask experiment, strain B0013-070B produced 122.8 g/l D-lactate with an increased oxygen-limited productivity of 0.89 g/g·h. The results revealed the effectiveness of using a genetic switch to regulate cell growth and the production of a metabolic compound.


Assuntos
Escherichia coli , Ácido Láctico/biossíntese , Aerobiose/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Engenharia Genética , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/genética , Regiões Promotoras Genéticas/genética
16.
J Ind Microbiol Biotechnol ; 39(8): 1209-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22430499

RESUMO

Fine tuning of the key enzymes to moderate rather than high expression levels could overproduce the desired metabolic products without inhibiting cell growth. The aims of this investigation were to regulate rates of lactate production and cell growth in recombinant Escherichia coli through promoter engineering and to evaluate the transcriptional function of the upstream region of ldhA (encoding fermentative lactate dehydrogenase in E. coli). Twelve ldhA genes with sequentially shortened chromosomal upstream regions were cloned in an ldhA deletion, E. coli CICIM B0013-080C (ack-pta pps pflB dld poxB adhE frdA ldhA). The varied ldhA upstream regions were further analyzed using program NNPP2.2 (Neural Network Promoter Prediction 2.2) to predict the possible promoter regions. Two-phase fermentations (aerobic growth and oxygen-limited production) of these strains showed that shortening the ldhA upstream sequence from 291 to 106 bp successively reduced aerobic lactate synthesis and the inhibition effect on cell growth during the first phase. Simultaneously, oxygen-limited lactate productivity was increased during the second phase. The putative promoter downstream of the -96 site of ldhA could function as a transcriptional promoter or regulator. B0013-080C/pTH-rrnB-ldhA8, with the 72-bp upstream segment of ldhA, could be grown at a high rate and achieve a high oxygen-limited lactate productivity of 1.09 g g(-1) h(-1). No transcriptional promoting region was apparent downstream of the -61 site of ldhA. We identified the latent transcription regions in the ldhA upstream sequence, which will help to understand regulation of ldhA expression.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Transcrição Gênica/genética , Sequência de Bases , Clonagem Molecular , Escherichia coli/citologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Fermentação , L-Lactato Desidrogenase/biossíntese , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética
17.
Biotechnol Lett ; 34(6): 1123-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22367280

RESUMO

Coupling lactate fermentation with cell growth was investigated in shake-flask and bioreactor cultivation systems by increasing aeration to improve lactate productivity in Escherichia coli CICIM B0013-070 (ackA pta pps pflB dld poxB adhE frdA). In shake-flasks, cells reached 1 g dry wt/l then, cultivated at 100 rpm and 42°C, achieved a twofold higher productivity of lactic acid compared to aerobic and O(2)-limited two-phase fermentation. The cells in the bioreactor yielded an overall volumetric productivity of 5.5 g/l h and a yield of 86 g lactic acid/100 g glucose which were 66% higher and the same level compared to that of the aerobic and O(2)-limited two-phase fermentation, respectively, using scaled-up conditions optimized from shake-flask experiments. These results have revealed an approach for improving production of fermentative products in E. coli.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica , Aerobiose , Biomassa , Reatores Biológicos , Escherichia coli/genética , Fermentação
18.
Sheng Wu Gong Cheng Xue Bao ; 27(1): 31-40, 2011 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-21553488

RESUMO

When Escherichia coli CICIM B0013-030 (B0013, ack-pta, pps, pflB) was used for D-lactate production, succinate and acetate were the main byproducts (as much as 11.9 and 7.1% the amount of lactate respectively). In order to decrease the byproduct levels, we inactivated succinate and acetate synthesis in B0013-030. Two recombinant plasmids containing mutation cassettes of frdA::difGm and tdcDE::difGm respectively were constructed first. The mutation cassettes were used to delete the target genes on the chromosomal by Red recombination. Subsequently, the antibiotic resistance gene was excised from the chromosomal by Xer recombination. Thereby, mutants B0013-040B (B0013-030, frdA) and B0013-050B (B0013-040B, tdcDE) were produced. D-lactate producing abilities of the engineered strains were tested both in shake flasks and in bioreactors using two-phase fermentation (aerobic growth and anaerobic fermentation) with glucose as the sole carbon source. When fermentation was carried out in shake flasks, inactivation of frdA in B0013-030 to produce B0013-040B reduced succinate accumulation by 80.8%. When tested in a 7-liter bioreactor, B0013-040B accumulated 114.5 g/L D-lactate of over 99.9% optical purity. However, 1.0 g/L succinate and 5.4 g/L acetate still remained in the broth. Further inactivation of tdcD and tdcE genes in B0013-040B to produce B0013-050B decreased acetate and succinate accumulation to 0.4 g/L and 0.4 g/L respectively, and lactate titer was as much as 111.9 g/L (tested in the 7-liter bioreactor). In lightof the lower byproduct levels and high lactate production, strain B00 13-050B may prove useful for D-lactate production.


Assuntos
Acetatos/metabolismo , Escherichia coli/genética , Ácido Láctico/biossíntese , Redes e Vias Metabólicas/genética , Ácido Succínico/metabolismo , Escherichia coli/metabolismo , Fermentação , Engenharia Genética , Mutação , Plasmídeos/genética
19.
Curr Microbiol ; 62(3): 981-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21086129

RESUMO

In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética , Aerobiose , Anaerobiose , Proteínas de Escherichia coli/genética , Fermentação , Deleção de Genes , Mutação , Organismos Geneticamente Modificados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...